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ABSTRACT 
The vibrational stability of detailed models of 6 Cephei stars i s  studied by numerical integration of the 

linearized non-adiabatic pulsation equations. In contrast to a previous investigation, improvements in 
the method of integration allow the non-adiabatic calculations to be carried from the surface lajrers deep 
into the star. The periods are also determined from the models. I t  is found that both the period and the 
stability coellicient can be evaluated to high accuracy on the basis of the outer half (in mass) of the 
star. The effect of convection on the structure of the equilibrium models is included; the interaction of 
convection with the pulsations is neglected. Boundary conditions are discussed in detail in an appendix. 
A series of fifteen models of 7 &Io lying along a portion of the evolutionary track calculated by Hof- 
meister, Kippenhahn, and U’eigert has been investigated. The results confirm the existence of a region 
of linear instability, due largely to the destaliilizing effect of second helium ionization, in a range of 
mean effective temperatures centered at  ahout 5400” K. The instahilily is present for both the funda- 
mental mode and the first overtone. In contrast to previous work, the hydrogen and first helium ioniza- 
tions are found to contribute significantly to the destabilizing effect, especially for the overtones. The 
instability zone is wider in terms of effective temperature than is indicated by observations, and the tem- 
peratures of the most unstable models appear to be several hundred degrees loaer than the observed 
temperatures of 6 Cephei stars. The results are consistcnt a i th  those of our previous ~ o r k  and of Cox. 
Possible consequences of the neglect of non-linear effects are discussed in a general way. The importance 
of the investigation of Cepheid pulsation as a check on the correctness of models for the evolution and 
structure of late-type stars in the helium-burning stages of evolution is pointed out. 

I. INTRODUCTION 

In this paper we discuss the non-adiabatic oscillations of rather detailed models of 6 
Cephei stars. We investigate the stability of infinitesimal radial pulsations of spherical 
stellar models by solving the fully non-adiabatic linearized equations of motion. Our 
main purpose is to understand how the instability depends upon the properties, partic- 
ularly the observable properties, of the stars. This includes the attempt to identify on 
theoretical grounds the classical Cepheid region in the Hertzsprung-Russell diagram. 
We have attempted here to improve the linear methods to the point that a quantita- 
tive comparison with observation is beginning to be possible. In addition, as Cepheid 
calculations are refined and extended, we may hope that they will provide an important 
check not only on our present ideas as to the causes of Cepheid instability but also on 
the correctness of theoretical models for the structure and evolution of late-type giant 
and supergiant stars. 

The uossibility that the seat of the pulsational instability might lie in the region of - -  
second ibnization of helium was suggested by Zhevakin and explored by him in a number 
of papers (a summary of some of this work and references to the original papers are 
found in Zhevakin 1963). Zhevakin used models consisting of a small number of discrete 
zones. Cox (1960) constructed models based on the “Woltjer method” in first approxi- 
mation, and also found a strong tendency toward instability caused by second helium 
ionization. In a later paper, Cox (1963; hereinafter cited as “053”)  integrated numeric- 
ally the full set of non-adiabatic pulsation equations, as did the present authors (Baker 
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and Kippenhahn 1962; hereinafter cited as “Paper I”). Although Cox used rather rough 
models, neglecting hydrogen and first helium ionization and taking very simple boundary 
conditions, he did consider carefully the structure of the second helium zone. He ex- 
amined several different sequences of models and found regions of instability in the H-R 
diagram due to second helium ionization. Cox was able to conclude that this effect can 
account for the instability of the 6 Cephei and RR Lyrae stars, and possibly also that of 
the W Virginis and 6 Scuti variables. In Paper I we constructed models that did include 
the hydrogen and first helium ionization zones. On the basis of a very limited number of 
models, we also found pulsational instability due to second helium ionization in the 
6 Cephei region of the H-R diagram. 

The present paper represents an extension of our previous work (Paper I). There are 
a number of major improvements, principally in technique. As in Paper I, the study is 
based on a series of equilibrium models ( Q  11). Previously the properties of these models 
were based on values inferred from observations; in the present work an evolutionary 
series of models for a star of 7 M o  obtained by Hofmeister, Kippenhahn, and Weigert 
(!964a, b, c; referred to hereinafter as “HKW I,” “HKW 11,” and “HKW 111”) was 
used. In  contrast to Paper I, convection is now taken into account in the equilibrium 
models. The linearization of the equations is carried out in the usual way ( 5  111). In  the 
absence of a satisfactory time-dependent theory of convection, we have made the Ansatz 
that the fraction of the energy flux which, in the equilibrium model, is carried by convec- 
tion does not interact in any way with the pulsations. The boundary conditions are 
slightly different from those used in Paper I ( 0  I11 and Appendix). In  that paper we 
also used periods based on observations; in the present work the proper periods have 
been calculated accurately from the models themselves ( Q  IV). The solution of the non- 
adiabatic equations ( Q  V) proceeds basically as before; however, a major improvement 
in the method of integration allows us to carry the integration from the surface as deep 
into the star as desired. In Paper I we were unable to use more than a few per cent of the 
star’s mass, due to numerical difficulties; we are now using the outer half of the star’s 
mass. I t  was found that this is more than enough to determine both the period and the 
stability coefficient to the desired accuracy. The stability coefficient is evaluated as in 
Paper I. The new techniques and the use of a much faster computer have enabled us to 
investigate both fundamental and overtone pulsations of a series of fifteen models along 
the evolutionary track. The results are presented in 0 VI. In Q VI1 the results are dis- 
hssed and compared with those of Cox (1963) and of Paper I, and some of the difficulties 
of the present approach are examined. 

A preliminary report of this work a t  an earlier stage was given by Baker ( 1 9 6 3 ~ ) .  
An extensive application of the techniques described in this paper has been made to a 
number of series of models, in which parameters such as mass, mixing length, and 
composition are varied. These calculations will be reported in a later paper in this 
series. 

11. THE EQUILIBRIUM MODELS 

As in Paper I equilibrium models are constructed by integrating numerically the 
time-independent equations in the outer layers of a star (“envelope”). In all cases it is 
assumed that the chemical composition throughout the envelope is constant and that no 
production of either nuclear or gravitational energy occurs (L ,  = const.). 

The envelope consists of an atmosphere and a subphotospheric region. In  the atmosphere 
only the equation of hydrostatic equilibrium is integrated, the temperature being deter- 
mined from an assumed temperature-optical-depth relation. In the subphotospheric layers 
an energy-transport equation is also included in the integration. The machine program 
now used for the equilibrium models differs in some respects from that described in 
Paper I. The present version of the program has also been used for other purposes and is 
described in detail by Baker (1963b) and, with slight variations, in HKW I. Therefore, 
we give here only a general outline of the essential parts of the program. 

. 
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In  the atmosphere we have used the temperature-optical-depth relation for a gray 
atmosphere in Eddington approximation. The use of this formula rather than the non- 
gray formula of Paper I results in values for the photospheric pressure that agree better 
with those obtained from integration of model atmospheres for A stars (Osawa 1956). 
One expects the non-gray effects to be still less important in cooler supergiant at- 
mospheres such as those of Cepheids. In  the hydrostatic equation (2) of Paper I, we 
have now included the reduction of the effective gravity due to radiation (Unsold 1955) : 

K aT,4 
geff = g - 7 ‘ 

In each case the atmosphere integration is carried to optical depth T = $. 
All the models discussed in this paper are based on the extreme Population I mixture 

(X = 0.602, Y = 0.354, Z = 0.044) used in the stellar evolution calculations of 
HKW I1 (the complete opacity table is reproduced in Table 1 of that paper). Line ef- 
fects were not included. The entire opacity table (log K as function of log p and log T) 
was stored in the machine. Values of log K a t  the desired points were obtained by linear 
interpolation as described in Paper I. 

Since the opacity table is now stored in terms of log p and log T instead of log P, and 
log T ,  i t  is necessary to solve the ionization equations in the atmosphere as well as in the 
subphotospheric layers. The ionization calculation is carried out just as before, except 
that we now use an iteration method to solve simultaneously the Saha equations for the 
degrees of ionization of H, He, and He+ (cf. Paper I, p. 122 n.). 

I 

The integration below the photosphere proceeds by solving the basic equations: 

(3)  
d lnM, - 47rr4P 
d 1 n P  GM,2 ’ 
~- -- 

with L = const. When convection is present the temperature gradient vc0,, in equation 

The mixing length I is described by the ratio l/IIpl where II, is the local pressure scale 
height. In this paper we have used 1/Hp = 1.5. 

(4) is calculated with the mixing-length theory as described in HKW I (eqs. [6]-[20]). 4 

The auxiliary quantities: cp, Vad, (8 In p / d  In T)p, (d In p/d In P)T,  
A 

(5) 

are calculated as before. At each integration point the quantities (8  In ~ / d  In P)T and 
(8 In ~ / d  In T),  were obtained by numerical differentiation in the opacity table. From 
these the quantities 

(7) 
KT=(”’””>,=(”””),-6 (--) I3 In K 

I3 1 n T  d I n T  a l n p  T ’  

needed for the pulsation equations are calculated. 
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The integration of the equilibrium models is carried from the surface to a point where 
M ,  = 0.5 M .  As we shall discuss in detail in $0 IV and V, it proved desirable to carry 
the integration this deep 'n order to determine the pulsation period accurately. This also 

tion are included. 
From the evolutionary models of HKW I1 and I11 we know that it is justified to as- 

sume that the initial composition has remained unchanged in the outer half of the 
star's mass. These calculations also justify the assumption L, = const.; even in the 
most rapid evolutionary evolutionary crossings of the Cepheid strip, the change in L, 
due to secular contraction or expansion is very small for M ,  2 0.5 M .  

In  the previous paper it was necessary to use semi-empirical masses since evolutionary 
models for Cephe'ids did not exist. In  the present paper, however, we have based our 
equilibrium models on the evolutionary track of HKW I1 and 111, which is reproduced 
in Figure 1. The evolutionary track of a model of 7.0 Mo crosses the region of the 
6 Cephei stars five times. The present calculations follow the second crossing since this 

by the heavy part of the curve in Figure 1. 

assures that all parts of t h e star that can contribute non-adiabatic effects to the pubs- 

\ i's the slowest one; the models lie i,n that part of the evolutionary track which is indicated 

1' 

M:70M,, X - 0 6 0 2 ,  Z=OOLL 

4 0  

30 J2 3 0 42 LD 39 10 37 35 

'--log 1, 

FIG. 1.-Evolutionary track for a star of 7 M o ,  according to HKW 111. The portion of the track 

In Table 1 are listed some of the properties of the models which were studied. Several 
of the models correspond exactly to evolutionary models obtained by HKW 111. They 

parameters of the other models were obtained by interpolation and extrapolation from 
these. The second and third columns indicate the values taken for lbminosity and effec- 
tive temperature. The fourth column gives the photospheric pressure, and the next 
three columns indkate the approximate center of the ionization zones (in terms of log 
Po). The eighth column li'sts the values of log Po a t  the top and bottom of the convection 
zones. Models 1 4  each have a single convection zone that includes all three ionization 
zones. Model 5 has two convection zones, one in the region of hydrogen and first helium 
ionization, another in the second hellium ionization zone, Modeb 6-15 have relatively 
thih and ineffective convection zones that do not include the region of second heljum 
ionization. 

studied in this paper is indicated by the heavy line. 

* are as follows: No. 1 = HKW 135, No. 7 = HKW 137, No. 9 = HKW 138. The 

i 

111. THE LINEAR OSCILLATIONS 

We begin with the basic time-dependent equations for a spherically symmetric star. 
These are discussed in detail in $ 4a of Paper I. The linearization of these equations 
proceeds in the usual way. We again introduce the non-dimensional variables x, p ,  t, 
and 1, defined as 

r = rO(l+~e*wo),  P = P , ( l + p e W G ) ,  T=T,(l+te 'wo),  L,=Lo(l+Ze'kG),  ( 8 )  
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where yo, Po, To, and LO are solutions of the equilkbrium equations and 3 is the time 
variable. The linearized equations are then 

MODEL 

l . . . .  
2 . . . .  
3 . . . .  
4.... 
s . . . .  
6 . . . .  
7 . . . .  
s . . . .  
9 . . . .  

10 . .  . . 
11 . .  . . 
12 . .  . . 
13. .  . . 
14. I . .  

15 . .  . . 

LOG 

LjLO 

___ 
3.587 
3.603 
3.617 
3.627 
3.636 

3.647 
3.663 
3.671 
3.676 
3.678 
3.681 
3.684 
3.687 
3.688 
3.6Y1 

~ __ 

LOG 

T .  

3.628 
3.650 
3.669 
3.680 
3.690 

3.710 
3.726 
3.740 
3.750 
3.760 
3.770 
3.780 
3.790 
3.800 
3.810 

~ 

TABLE 1 

PROPERTIES OF THE MODELS 

LOG Po 

Photo- 
sphere 

3.46 
3.43 
3.41 
3.41 
3.40 

3.41 
3.41 
3.41 
3.40 
3.39 
3.37 
3.35 
3.32 
3.28 
3.23 

H I  
Zone 

4.07 
3.98 
3.91 
3.87 
3.84 

3.77 
3.72 
3.67 
3.64 
3.60 
3.55 
3.51 
3.46 
3.41 
3.35 

He I 
Zone 

4.99 
4.64 
4.42 
4.30 
4.22 

4.07 
3.96 
3.86 
3.80 
3.74 
3.68 
3.62 
3.56 
3.50 
3.44 

He I I  
Zone 

6.13 
5.52 
5.09 
4.87 
4.78 

4.70 
4.68 
4.63 
4.63 
4.63 
4.63 
4.63 
4.63 
4.63 
4.63 

Convection 
Zone(s) ___ 

3.80-8.44 
3.76-6.95 
3.73-5.78 
3.71-5.20 
3.69-4.41 
4.69-4.94 

3.62-4.00 
3.59-3.89 
3.56-3.82 
3.53-3.75 
3. 50-3.68 
3.46-3.60 
3.42-3.54 
3,38-3.47 
3.33-3.40 

3.66-4.16 

~ ~ 

no 
(days) 

_- 
25.8 
20.5 
17.3 
15.9 
14.7 

1 2 . 7  
11.5 
10.4 
9.7 
8.91 
8.3: 
7.7.  
7 .1:  
6 .6  
6.1' 

__ __ 

n, 
(days) 

__ 
14.4 
1 2 . 7  
11 5 
10.8 
10.2 

9.01 
8 . a  
7.5: 
7.0; 
6.5: 
6.1; 
5.7( 
5 3' 
4.9i 
4.6( 

__ 

Qo 
(days) 

_--_ 
0.0553 

,0496 
.0468 
,0454 
,0444 

,0432 
,0423 
.0417 
,0412 
,0408 
,0403 
,0399 
,0396 
,0392 

0.0389 

(9) 

(10) 

(11) 

(12) 

Q1 

(days) 

_-- 
0.0294 

,0303 
,0309 
.0310 
,0309 

,0307 
,0304 
,0302 
,0300 
,0298 
,0297 
,0295 
,0293 
,0291 

0.0289 

The (Lagrangian) independent variable is the logarithm of the equilibrium pressure 
belonging to a given mass shell. We have also introduced the dimensionless frequency 

0- = W / . \ / ( l ? r c p ) ,  (13) 

where 
Equation (11) is valid only in those regions where all of the energy is transported by 

radiation. In the convection zones there arises the problem of dealing with the time 
variation of the convective energy flux. The mixing-length theory used for the equi- 
librium models is a steady-state theory; a simple linearization of these equations would 
be valid only if the convective time scale were small compared with the pulsation period. 
Simple estimates indicate that this will not be the case everywhere in the outer convec- 
tion zone of a star. A physically correct treatment of the pulsations of the convective 
regions would require the use of a time-dependent theory of convection (this problem 
has been studied by Christy 1962). We therefore have made the assumption that the 

is the mean density of the star. 
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convective part of the energy flux is completely unaffected by the pulsation. Thus we 
separate the flux into a radiative part plus a convective part: 

L, = L,R + L,C , (14) 

and we assume that LTc is a t  all times equal to L J ,  the equilibrium value. If we define 
lR by 

then lR and I are related by 

The equation for the radiative flux, 

P = (Lo/L,i3R)l. 

dT 3 K P L ~ ~  
d In P - 167ra cGM,T3 
___ - _____ 

has the linearized form 

dt  __- 
I -  n 

(15) 

Thus we replace equation (11) by equation (18), which reduces to equation (11) in 
radiative regions. 

The pulsation equations (9), (lo), (121, and (18) apply to the subphotospheric region of 
the equilibrium models. The properties of the atmospheric pulsations are not considered 
here and appear only in the boundary conditions that are applied to the pulsation equa- 
tions a t  the photosphere. 

The thermal boundary condition a t  the photosphere (7 = Q )  is 
= 3X + (4 - $ K T ) t  - $ K p p .  ( 2 0 )  

This condition differs slightly from that used in Paper I and also from that derived in 
the more detailed considerations of Unno (1964) (the boundary conditions are discussed 
in detail in the Appendix). The mechanical boundary condition is that appropriate to 
isothermal or adiabatic oscillations of an isothermal atmosphere, 

p = -(3u2 + 4)x , 
which is equivalent to 

-- d p  - 0 .  d In PO 
This condition is derived in the Appendix. The same condition was derived in a different 
way in Paper I but differs somewhat from the condition used for most of the models of 
that paper. It also agrees with that used in C63. 

If we were using a complete stellar model, the inner boundary condition would be the 
requirement of regularity at  the center. Since, however, our equilibrium model does not 
extend to the center, we must apply some condition at the inner boundary of the 
envelope. Therefore we require that, a t  the inner boundary, the envelope solution must 
fit exactly to the adiabatic oscillation of the interior. Thus we require 

= VadP (23) 

a t  the inner boundary of the envelope. Since this point is so deep that the factor 

-- 4rPO2 r o4 6 d(4;j) - 
LoMrpo 
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in equation (12) is very large compared with unity, any solution that is regular a t  the 
center will also fulfil condition (23) to a high degree of accuracy. 

In  general the eigenvalue u is complex and we are free in addition to specify a complex 
normalizing factor. If we omit the interior and instead apply condition (23) a t  the inner 
boundary of the envelope, then the system of equations (9)-(12) with conditions (20), 
(22), and (23) can be integrated for any given value of U .  Since the eigenvalue is a 
property of the entire star, one might expect it to be impossible to determine u on the 
basis of a model of the outer layers alone. In fact it  turns out that both the real part of u, 
which determines the period, and the imaginary part of u, which determines the damping 
coefficient, may be obtained to a high degree of accuracy by consideration of the 
envelope alone. 

In  order to determine both parts of u, which is the object of this investigation, the 
missing interior must be replaced by suitable additional conditions on the envelope 
solution. The way in which this is done will be described in the next two sections. 

IV. DETERMINATION OF THE PERIODS , 
In Paper I we chose the periods on the basis of a semi-empirical period-mean-density 

relation. This had the consequence that some of the periods chosen were quite different 
from the actual fundamental periods appropriate to the models. Indeed, some of our 
fundamental solutions had overtone characteristics, as was pointed out by Ledoux 
(private communication). In the present paper we determine the periods purely theo- 
retically from the models themselves. 

If we apply the adiabatic condition (23) a t  each point, then equations (9) and (10) to- 
gether with the boundary condition (21) can be solved for any given value of u (adiabatic 
approximation). The solutions p and x will satisfy regularity conditions a t  the center 
only for a certain set of (real) eigenvalues ut (i = 0,  1, 2, . . .). It turns out to be possible 
to determine the first two eigenvalues to a sufficient degree of accuracy on the basis of 
the envelope model alone. This is especially true for the fundamental mode of stars with 
high central condensation (cf. Epstein 1950). 

The eisenvalue is determined by requiring that the behavior of the functions in the 
envelope be consistent with the regularity conditions a t  the center. For exmiple, the 
fundamental oscilhtion with frequency uo which fulfils the regularity condition will have 
no zeros in either x or its (space) derivative, except a t  the center. Therefore if a solution 
using a t r i J  value of uo has a zero in x or in dx/d In Po in the envelope, its continuation in 
the interior could never satisfy the regularity condition a t  M ,  = 0. The direction in 
which x tends to diverge tells us how u must be changed. 

The search for the eigenvalue uo proceeds as follows: A (real) trial value for uo is 
chosen and the second-order set of pukation equations for the adiabatic approximation, 
with the boundary condition (21), is integrated from the surface inward. If the function x 
changes sign, one knows that the trial frequency is greater than uo. If z does not change 
sign, and its derivative dx/d In PO does change sign, it is an indication that the trial value 
is too low. The procedure i s  illustrated in Figure 2 for a typical model of our series. In  this 
case it is seen that the difference between the upper and lower limits to CJ is less than 0.65 
per cent. This method works particularly well for stars in the Cepheid region; both hotter 
and cooler stars of similar mass and luminosity are less centrally condensed, and for them 
a larger fraction of the mass would have to be used to obtain the same accuracy. 

The method may be extended to obtain the overtone frequencies ut by requiring that 
the ith overtone have exactly i nodes both in the function x and in its derivative. The ac- 
curacy becomes somewhat poorer for higher overtones. Nonetheless, we are able to deter- 
mine the periods to an accuracy of k0.4 per cent for the fundamental mode and * 0.6 per 
cent for the first overtone for all the models of our series except models 1 and 2. These 
cool models have very deep convection zones and consequently are not very condensed. 

I 

. 

. 
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I n  model 1, for example, the fundamental period could be determined to only about 
- + 20 per cent. The period and the pulsation constant 

Q = &'(ij/ija) (24) 

of the fundamental mode and first overtone for all models of the series are given in the 
last four columns of Table 1. 

Since complete stellar models are available for some of the equi~ibrium models in the 
present investfgation, it would be possible to use them to calculhte the periods to very 
high accuracy. Such calculations have been carried out by Temesvary (1964); the 
periods obtained confirm those computed by the method described above. In  general 
our method is more than sufficiently accurate for the present purpose. 

FIG. 2.-Method used to determine the period. The function x is plotted for the adiabatic pulsations 
of model 7 of our series. The scale is increased by a factor of 100 for log PO > 10.0 in order to show the 
different behavior of the function for two slightly different values of u. The arrow indicates the value of 
log PO corresponding to M ,  = 0.5 M .  

The inclusion of non-adiabatic effects would change the periods only slightly. Thia can 
be expressed in terms of the non-adikbatic parameter 7, defined by equation (29), which 
is approx?mately the ratio of the peripd to the damping time of the star. The relative 
change in frequency due to non-adiabatic effects will be of order q2 (cf. Ledoux 1963; 
Baker 1965). I n  most of our models I ql is of order lo-*, and the maximum value found 
is approximately 3 x le3. Hence non-adiabatic effects will change the period by no 
more than one part in lo5, and we may safely use the adiabatic periods. 

7 

J 

V. THE NON-ADIABATIC MODELS 

When the eigenfrequency has been found from the adiabatic equations the solution 
may be extended to obtain the quasi-adiabatic approximation to the non-adiabatic sys- 
tem. This is done in the following way: from the adiabatic solution we know the vahe  of 
p and x a t  each point. Then we find t from equation (23) a t  each point and its derivative 
from 

with 
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Then I can be obtained from equation (18). The set of functions x, p, t, and I SO ob- 
tained is used as the first trial solution in our iterative method of solving the fully non- 
adiabatic pulsation equatlons. 

The next step is to solve the set of non-adiabatic linear equations (9)-(12), using the 
frequency u found in the adiabatic calculat?on. Here the method of integration plays a 
significant role in the accuracy of the results. Since we are dealing with a linear system, 
the most straightforward method is to construct trial solutions which may then be com- 
bined to satisfy the boundary conditions. This was the method used in Paper I ;  as we 
pointed out there, it  has important disadvantages when the integration is carried into 
the nearly adiabatic interior. When this method was used, we were forced to terminate 
the integration a t  a rather small val'ue of log Po, and it was necessary to estimate the 
damping due to the interior. In  order to overcome this problem we attempted to con- 
struct a complete solution for the outer 50 per cent of the star's mass by fitting the non- 
adiabatic solution in the outer part of the envelope to the quasi-adiabatic solution in the 
deeper layers of the envelope. This method was only moderately satisfactory and re- 
quired use of double-precision calculations. 

A completely satisfactory method was found only by going to an iterative method of 
solution. I t  was found that a relaxation method, similar to that which has proved most 
satisfactory for numerical i'ntegration of the non-linear equations of stellar strufture 
(Henyey, Forbes, and Gould 1964), also can be applied very successfully to our linear 
equations. With this method it is possible to integrate the full non-adiabatic equations 
as deep as desired, well into the adiabatic interior regions. These sohtions then have a 
smooth transition from the non-adiabatic character outside to the adiabatic character 
inside. It is no longer necessary to estimate the interior damping. 

The procedure described above uses the value of u found from the adiabatic calcula- 
tion. This quantity is real and is a good approximation to the real part UR of u in the 
general case. We wish, however, to determine the imaginary part UI of u. Since this must 
be done on the basis of the envelope model alone, an additional condition is required. 
Physically this condition is that energy must be conserved in the star as a whole. Instead 
of actually solving for uI, we use the approximate method of the energy integral de- 
scribed in Appendix C of Paper I. The non-adi;ibatic equations are integrated using the 
real vnhie of u from the adiabatic model. Then the energy integral 

W = 4sZPoro3lm(p*x) (27) 

is evaluated a t  the inner boundary of the envelope. Call this value W t .  Since the interior 
part of the envelope is highly adiabatic, the value of W l  is independent of the point 
chosen for the inner boundary of the envelope, so long as this is sufficiently deep (see 
Fig. 4). T o  get an estimate of uI we normalize W ,  with respect to the total pubational 
energy of the star: 

UTp = 3-l I x I 2r02dMr.  

Since the integrand in equation (28) is very small in the interior compared with its value 
in the outer layers, W, may be very accurately approximated by carrying the integra- 
tion over the envelope alone. We then define the stability coefficient: 

(28) 
O R 2  

7 = WJW, ? (29) 

which is approximately equal to the ratio - U I / U R .  

VI. THE RESULTS 

For each of the models listed in Table 1 an equilibrium model was constructed by inte- 
grating equations (2)-(4) from the surface to the level M ,  = 0.5 M .  Then the periods 
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IIo and 1111 for the fundamental mode and first overtone of each model were obtained 
from the adiabatic equations by the method described in 0 IV. With these periods the 
non-adiabatic equations were then integrated numerically. 

The results of this integration in a typical case are shown in Figure 3 .  Both real and 
imaginary parts of the functions x, p ,  t ,  and I are plotted as functions of log PO. (For 
numerical convenience, log Po was used as the independent variable in the calculations. 
In  order to show more detail, the functions are plotted only as far as log PO = 9.0; in 

4 0  5.0 6 .O 7.0 log Po 8.0 9.0 

FIG. 3.-Real and imaginary parts of the fluctuations for model 7. The hydrogen, first helium, and 
second helium ionization zones are indicated. 
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general the calculations were carried to a value of log Po between 11.0 and 12.0, in order 
to reach the desired depth in mass.) 

The normalization constant is chosen so that XR = +l.O, xI = 0, a t  the photosphere. 
The hydrogen, first helium, and second helium ionization zones are indicated. (For this 
purpose we have defined the “ionization zones” to be those regions where Vad < 0.2 due 
to ionization.) The non-adiabatic effects in the outer layers are reflected in the strong 
variation of the thermal quantities t and I, while the mechanical quantities x and 9 re- 
main quite smooth. Figure 3, which refers to the fundamental mode of model 7 of our 
series, may be compared with similar figures in Paper I. The general run of the variabks 
is similar; the chief differences are due to the change in the boundary conditions. 

5x16’ 

W 

t 4  
3 

2 

I 

0 

FIG. 4.-The w-integral for model 7 .  The arrow indicates the value of log PO corresponding to M,/M = 
0.50. Thc curve bccomes horizontal long before this point is reached, indicating that the inner boundary 
of the envelope lies deep inside the adiabatic interior. 

For each model the energy integral W as defined by equation (27) was calculated a t  
every point, and W ,  was obtained by integrating the pulsational energy through the 
entire envelope. Then the “normalized energy integral,” 

w = W/W, (30 )  , 

can be computed at  each point. The behavior of Z ~ J  shows whether a particular region of 
the star produces positive or negative damping. If dw/d log Po is positive in a particular 
region, it means that this region contributes a destabilizing effect; conversely, a negative 
value of the derivative indicates a Lyer that contributes damping. In the adiabatic in- 
terior the derivative goes to zero and, from the definition (30), 17 is equal to the value of 
w a t  the inner boundary of the envelope. 

In Figure 4 we have plptted the function w for the fundamental mode of model 7 of 
our series (this is the same model as in Fig. 3; it corresponds to niodel 137 of HKW 111). 
From this figure one sees that, in contrast to Paper I, we have here carried the calcula- 
tions deep enough into the star’s interior that w becomes essentiallfr constant. Therefore 
the central value of w, which determines the total amount of damping or excitation of 
the star, is known without our having to carry the integration into the central region or 
to estimate the contribution of the interior. In  order to give an idea of the depth of the 
envelope in terms of log Po, the point a t  which M ,  = 0.5 M has been indicated. 

In  Figure 5, w is plotted for the fundamental mode of five models of our series. 
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Figure 5, a-e, correspond to models 15, 12, 7,4, and 1, respectively, of our series, going 
from the model having the highest effective temperature to that having the lowest. 
Since the value of w at the right-hand side of each figure is equal to r]  for the correspond- 
ing model, one can see that model 15 is stab&, the others being unstable with maximum 
instability occurring somewhere near model 7. 

Figure 6 shows the behavior of w for the first overtone of model 7. This may be com- 
pared with the fundamental for the same model, shown in Figure 5 ,  c. The overtone 
pulsation is somewhat more unstable. The contribution to w from the hydrogen-first 
helium ionization zone is much greater relative to that from the second helium ionization 
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T .  + 
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zone. This is due chiefly to the relatively greater amplitude of the fluctuations in the 
outer layers for the overtone pulsations. (The amplitude of 2, e.g., falls more steeply 
going inward from the surface, and for the model of Figure 6 the node is a t  log PO = 5.9. 
The amplitude is very small interior to the node.) 

The final result of the calculation for each model is then the stability coefficient 7. I n  
Figures 7 and 8 we have plotted, for fundamental mode and first overtone, respectively, 
the value of 7 along the part of the evolutionary track here investigated, using log T ,  as 
abscissa. Both modes have a maximum instability near models 7 or 8 (T ,  = 5400'). The 
horizontal arrows in Figures 7 and 8 show the observed fluctuation amplitude in T ,  of the 
Cepheid 7 Aql, according to Oke (1961). Although the comparison with 7 Aql is not exact 

FIG. 6.-The w-integral for the first overtone of model 7 

(the models here investigated are approximately 0% brighter than 7 Aql in mean 
bolometric magnitude), it is apparent that the mean effective temperature of the most 
unstable models is several hundred degrees lower than that of 7 Aql. The width of the 
instability zone in terms of log T,  is about twice as great as the observed temperature 
fluctuation of 7 Aql. 

Some features of the way in which the contributions of various layers to the damping 
or excitation depend upon effective temperature may be seen from an inspection of 
Figure 5 .  In  the first model (Fig. 5, a), there is a destabilizing region due to second 
helium ionization in the neighborhood of log Po = 4.6. This effect, however, is more than 
canceled by the damping in the deeper-lying non-adiabatic zone where helium is com- 
pletely ionized. The hydrogen and first helium ionizations occur in the outer layers and 
have a negligible effect. I n  the slightly cooler model of Figure 5 ,  b,  all three ionization 
zones have moved deeper and they are all making a greater contribution. The damping 
in the deeper-lying part of the non-adiabatic zone is decreased because the second 
helium ionization occurs deeper. The initial rise in w a t  the left is due to both hydrogen 
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and first helium ionization. I n  the next cooler model (Fig. 5, c ) ,  all of these effects have 
increased. In  the still cooler model of Figure 5, d, the destabilization due to second 
helium ionization has become still larger. The contributions of the hydrogen and first 
helium ionization zones, however, have decreased. The reason is that these zones are 
now becoming convective; according to our assumptions (0 111), that portion of the 
energy flux which is carried by convection cannot contribute to damping or excitation. 
The existence of convection also means that the ionization zones become more extended, 
covering a larger range in log Po. For this reason it is possible to resolve the separate 
effects of hydrogen and first helium ionization in Figure 5 ,  d. In the very cool model of 
Figure 5, e, one can see what happens when the entire inner envelope, including the 

FIG. 7.-The stability coefficient as a function of log T,  for the fundamental mode of all models of 
the series. 

second helium ionization zone, becomes largery convective. Whether ionization occurs 
or not, no region of the envelope makes much contribution to damping or excitation; 
only that small portion of the flux which is radiative can have any effect. At these low 
surface temperatures a fully convective envelope is approached; such an envelope must, 
in our treatment, have neutral stability. 

In  Figure 9 is plotted the phase shift 4 between I and x as a function of depth, again 
for model 7. The sign of 4 is such that a value 0 < 4 < 180" means that maximum I 
occurs before maximum x. In the interior regtons 4 = 180", in agreement with the quasi- 
adiabatic approximation, which is valid there. Going toward the surface, 4 increases 
slightly in the region of positive damping interior to the second helium zone, then de- 
creases where the damping is negative due to second helium ionization. Another slight 
increase in 4 outside the second helium zone is followed by a sudden drop in the first 
helium and hydrogen ionization zones. The resulting value of 4 a t  the surface is nearly 
zero. 

I t  may be noted that the sense of the change in 4 is related to the sense of the damping 
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in any particular region: positive damping corresponds to &/d In Po < 0 and vice versa. 
On the other hand, the magnitude of the phase shift does rtot reflect the magnitude of the 
contribution of a layer to the positive or negative damping. For example, the second 
helium zone and the hydrogen-first helium zone each contribute about the same amount 
of excitation in model 7, but the phase shift in the latter zone is much greater. The re- 
sulting phase shift a t  the surface appears to depend less upon the total amount of nega- 
tive damping than upon the region of the star in which this effect occurs. 

4.0 x I O-= 

I 
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I I I - I 
M =7.0 

.602/.354/.044 

lST Harmonic - 

- 

- 

- 

- 
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FIG. 8.-The stability coefficient 7 as a function of log T. for the first overtone of all models of the 
series. 0 
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VII. CONCLUSIONS AND DISCUSSIONS 

Although the evolutionary calculations show that a star may pass through the 
Cepheid region several times during its history, we have here investigated only a single 
such crossing. This investigation has shown that a star becomes vibrationally unstable 
when it enters a region in which the surface temperature is about 5000"-6000" K. Hotter 
models are decidedly stable; for cooler models we can say that the instability mechanism 
investigated here cannot be effective. Stability calculations for a few models correspond- 
ing to the other crossings have also been made but are not discussed here in detail. These 
calculations show that a star of given mass becomes unstable in about the same range of 
effective temperatures each time it crosses the Cepheid strip. This is to be expected 
since the outer layers for all the crossings are nearly the same for a given effective 
temperature (cf. Fig. 1). 

The luminosity of the star remains essentially constant during any single crossing of 
the Cepheid strip. However, since a star of a given mass may cross the strip several 
times, there will not be a unique mass-luminosity relation for Cepheids. The difference in 
luminosity from one crossing to another, although it is not very great, does have the 
consequence that we would not expect a unique period-luminosity relation to exist, 
even if the width of the instability strip in T ,  were very small. From an observational 
viewpoint, however, the dispersion in the period-luminosity relation resulting from the 
non-unique mass-luminosity relation will be small compared with that due to the finite 
width of the strip. 

The present results are in qualitative agreement with those of Paper I and with those 
of C63. In contrast to both of the above works we have calculated the periods from the 
models themselves (the pulsation constants agree quite well with those assumed in 
C63). A second difference is the freedom from the necessity of estimating the contribu- 
tion of the interior to the damping. In  Paper I we investigated only a few isolated models, 
while in C63 several series of models were studied, the models in each series having a 
given mass and luminosity, the radius being varied. In  this sense the present paper is 
similar to C63, except that we can now follow an actual evolutionary sequence of models 
of given mass. (In practice the luminosity is nearly constant throughout the series.) 

Our results confirm the conclusions in Paper I and in C63 that the second helium ion- 
ization zone plays an important role in producing linear pulsational instability in Ce- 
pheids. On the other hand, the hydrogen and first helium ionization zones now con- 
tribute as much or more to the excitation in some cases as does the second helium zone. 
This effect is not seen in the models of Paper I (C63 does not consider hydrogen and first 
helium ionization). The main reason for the difference is that the hydrogen and first 
helium zones are much more extended in the present models due to convection, which 
was neglected in Paper I. Thus for a model of given M ,  L, and T,, the amount of mass 
in the ionization zones is considerably greater when convection is taken into account. To  
a lesser extent, the different boundary conditions also pky a role. As was seen in com- 
paring models Is and I,' of Paper I, the nature of the pulsations, especially in the hydro- 
gen ionization zone, is quite dependent upon the photospheric boundary condition. 

The present calculations have shown that a region of pulsational instability exists for 
stars having effective temperatures near the observed temperatures of the classical 
Cepheids. The calculated periods near the point of greatest instability are nearly in 
agreement with observed periods. 

On the other hand there are still a number of difficulties. The range of effective tem- 
peratures for which instability appears is considerably greater than the observed width 
of the Cepheid strip. Also, the maximum of the instability lies a t  an effective tempera- 
ture several hundred degrees lower than the apparent center of the observed Cepheid 
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region.’ Our calculations also indicate that the first overtone should be a t  least as strong- 
ly excited as the fundamental. This does not appear to be observed. Finally the calcula- 
tions do not predict the observed phase shift of roughly 90” between the radius and 
luminosity fluctuations. 

All of the above cases of failure to predict observational details may reflect the in- 
herent limitations of the linear-stability analysis. Our treatment shows only that certain 
stars will be unstable against infinitesimal pulsations. The amplitude is determined by 
non-linear effects which set a limit to the growth of the pulsation. Two stars that have 
the same value of 9 may have quite different amplitudes. Therefore some stars that, ac- 
cording to the linear theory, are clearly unstable may pulsate with a very small ampli- 
tude and thus appear to the observer to be stable. The observed Cepheid strip hence 
might be expected to be thinner than the theoretical one. 

The linear models may also be misleading when one compares the contributions of 
different layers of the star to the damping or excitation. In  a full-amplitude pulsation 
the relative contributions may be quite different, because the non-linear effects may dif- 
fer greatly from one region to another. From Figure 3, for example, we see that the ampli- 
tudes of all the functions, and particularly that of t ,  are much greater in the hydrogen 
ionization zone than in the second helium zone. Thus, as the amplitude increases 
with time, we may expect non-linear effects to become important first in the hydrogen 
zone. An additional effect is the fact that the hydrogen ionization ‘Lsaturates” much 
sooner, due to the lower ionization potential. Hence, this zone may, a t  large amplitude, 
be driven so hard by the rest of the star that ionization is complete long before the maxi- 
mum temperature is reached. In such models the linear calculations could greatly over- 
estimate the destabilizing effect of the hydrogen zone. 

If we were to discount the destabifizing effect of the hydrogen ionization zone in large- 
amplitude pulsations, many of our models, particularly those on the edges of the in- 
stability strip, would be more stable. The strip would be narrower, and its center would 
be shifted. It appears from preliminary calculations that this shift would be to the 
right, thus making the discrepancy with the observed effective temperatures greater. It 
would also have the effect of making the overtone pulsations much more stable, since the 
instability we have found for the overtones is caused almost entirely by the hydrogen 
and first helium ionization zones. Indeed, from a comparison of Figures 5 ,  c, and 6 it can 
be seen that the overtone pulsation of model 7 would be stable if that part of the excita- 
tion due to hydrogen and first helium ionization were neglected. The fundamental mode 
would still be unstable, although less so. 

From Figure 9 it is seen that the phase shift a t  the surface depends, in our calculation, 
very strongly on the complicated situation in the outer layers, particularly in the hydro- 
gen ionization zone. Since the non-linear effects are apparently most important just in 
this zone, it is perhaps not surprising that the lipear theory does not give satisfactory 
results for the phase shift. 

The above problems, which are inherent to the linear theory, can probably bc solved 
only by integrating the complete set of non-linear equations. Such calculations have been 
begun by Christy (1964) and by Cox and collaborators (Cox 1965); they should provide 
an important check on the linear theory. 

The present treatment of convection, which ignores the interaction with the pulsa- 
tions, cannot be considered satisfactory. Within the present framework, however, it is 
possible to indicate qualitatively what would happen if the assumed effectiveness of con- 

1 This was also found in C63 and was emphasized by Baker (1963a). It is not clear whether this dis- 
crepancy is serious or not. It may indicate that the structure of our equilibrium models needs to be 
changed slightly. Preliminary investigations (Baker 1963a and unpublished) indicate that the location 
of the instability strip may be sensitive to the assumptions made as to chemical composition and con- 
vection in the model envelope, 
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vection in the equilibrium models were changed. If it is assumed that the mixing-length 
theory with Z/H, equal to 1.5 greatly overestimates the convection, so that the energy 
flux in even the coolest models is carried almost wholly by radiation, the instability strip 
would extend to much lower effective temperatures. The instability would continue 
until the effective temperature is so low that even the hydrogen ionization takes place in 
the adi,abatic interior. This would lead to a very considerable contradiction with the ob- 
served width of the Cepheid strip. If, on the other hand, the convection is more effective 
than we have assumed, the instability strip would move to the left and become narrower. 
This would appear to give better agreement with observation. In  the models this effect 
could be produced by basing the calculations of the equilibrium models on a larger value 
of the mixing length. The effect reflects only the change in the stratification of the sub- 
photospheric layers as a consequence of convection. Some of these points will be dis- 
cussed in detail in a later paper. 

Because the properties of the pulsation do not depend upon the interior structure it 
would at first appear that the occurrence of the Cepheid phenomenon can give us little 
information about the evolutionary history of a star. An exception to this is the possibil- 
ity of obscrvkig period chnges. As the star’s radius changes during its neariy horizontal 
passage through the Cepheid strip, the period will increase or decrease depending upon 
whether the effective temperature decreases or increases. Since the time scale for the 
change in effective temperature is controlled by the evolutionary changes in the most 
central region, the rate of change of period might be a very sensitive test of the correct- 
ness of presently accepted ideas about the helium-burning stages of stellar evolution. The 
sense of the period change shows whether the star is on a crossing from left to right or 
vice versa. The magnitude of the relative period changes for a star of 7.0 M o  is expected 
to be of the order of 0.01 per cent in 100 years, for the three slowest crossings (HKW 
111). Presently available observations do not appear to be in contradiction with the 
theoretically predicted period changes (Hofmeister et al. 1965). However, more observa- 
tional material relating to period changes in Cepheids would be highly desirable. 

On the other hand the pulsational properties are quite sensitive to the structure of 
the outer layers. Thus it may be conjectured that the period changes observed in some 
Population I1 Cepheids are somehow related to changes in the structure of the outer 
layers. Among other things the depth of the outer convection zone will affect the period. 
As the Cepheid calculations become more detailed and refined, it may be possible to 
infer information about the outer convection zone through a comparison of observed and 
calculated periods. Nor can we rule out the possibility that the structure of the convec- 
tion zone may have a significant influence on the stability. 
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APPENDIX 

THE SURFACE BOUNDARY CONDITIONS 

The boundary conditions to be applied to the set of equations (9), (lo), (12), and (18) a t  the 
photosphere should be obtained by a detailed consideration of the pulsations of the atmosphere. 
This has recently been done by Unno (1964). At the time our calculations were carried out, how- 
ever, Unno's work was not available; therefore we have used boundary conditions derived from 
a very simple model of a pulsating atmosphere. Here we describe this simple model and com- 
pare the boundary conditions derived from it  with those obtained by Unno. We also discuss 
some numerical tests that were carried out to see how the stability calculations are affected by 
the boundary conditions. Finally, we consider the effect of applying a running-wave boundary 
condition instead of the usual requirement of standing waves. 

a )  The Thermal Condition 
The thermal boundary condition was obtained (cf. Paper I, p. 128) simply by linearizing the 

temperature-optical-depth relation: 
T 

Let d be the non-dimensional fluctuation in r :  

r = T O (  1 + d e ; u w " ) .  (A2) 

The linearized form of equation (Al) is then 

4 t = 1 - 2 x +  - (A31 

If we now write, as in Paper I, 
dMr (A4) 

K d r =  --- 
4ar2 

and integrate this equation through the atmosphere, we obtain 

where m is the mass of the atmosphere. In  performing the integration we have assumed r to be 
constant; ( K )  is then a mean value for K in the atmosphere, assumed to be weighted according 
to mass and so as to take into account the neglected variation of r .  We then make the additional 
assumption that this mean value of K will not differ greatly from the value of K at the point 
where the condition is applied. Thus we set 

( K ) =  K (A6) 

in equation (AS). The linearized form of this equation is then 

d = - 2 X +  K T t f  K p p  ; 

upon substituting this into equation (A3) we obtain the condition 

(-47) 

We note several special cases of equation (AS). If T~ = 0, we have 

1 = 2 x  + 4 t .  (A9a) 
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This is just the condition one obtains by neglecting the variation of optical depth during the 
pulsation; i t  may also be obtained by a straightforward linearization of the Stefan-Boltzmann 
law. The condition (A9a) was used for most of the models in Paper I. A second special case is 
given by T~ >> 1 : 

I =  4% + ( 4 - K T )  t -  K p p  . (A9b) 

This is the thermal boundary condition used for one of the models (model I;) of Paper I. When 
T U  = t ,  equation (AS) becomes 

I =  3 X  f ( 4 -  4 K T )  t - 4  K p p  . (Ape) 

This is the condition actually used for all of the models of the present paper (cf. $111). 

(1964). In  our notation, Unno’s condition is 
The condition (AS) may be compared with the corresponding condition derived by Unno 

[ ( 2% ) ( ~ T - 4 1 1 4  - 1 J 
( I  - 4 X  + K p P ) )  (A101 

n = (To/T,I4 (A111 

and To  is the equilibrium temperature a t  70. 
As Unno has pointed out, the difference between the correct equation (A10) and our approxi- 

mate equation (AS) is apparently due to our rather crude approximation (A6) for (K). In the 
limit T,, >> 1, both equations (AS) and (A10) reduce to  equation (A9b). At the photosphere one 
must set n equal to  unity in equation (AlO). Depending upon the photospheric value of KT, the 
resulting expression may be quite different from equation (A9c).2 

( K T - 4 )  
t = t ( 2n ) (~7--4)/4 ( I -  2 % )  + 

where 

b)  The Mechanical Condition 
The boundary condition (21) for the mechanical quantities may be derived by supposing that 

the oscillations of the atmosphere obey a simple adiabatic or isothermal law. The procedure fol- 
lowed is to solve equations (9) and (10) with the assumption 

a p  - a t  = P / Y  9 (A12) 

where y = const. For adiabatic oscillations, y = rl; for isothermal oscillations, y = 1. As 
Unno has shown, the thermal relaxation time of the atmospheric layers of a typical 6 Cephei 
star is so short compared with the period that the assumption of isothermal oscillations is very 
good. 

It is convenient to define a new independent variable: 

zo = ro /R . (A13) 

I n  terms of this variable and with the assumption (A12), equations (9) and (10) may be 
combined into a single second-order differential equation: 

Here we have defined the scale height 

and the quantity 

The boundary conditions have also been discussed by Takeuti (1964). His treatment refines our 
crude treatment of the thermal condition (eqs. [AS] and [A6]) but is less general than that of Unno. 
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We now make the following assumptions about the equilibrium model: (i) The entire thick- 
ness of the atmosphere is small compared with the radius of the star. Thus we set X = 1; we 
also put zo = 1 wherever i t  appears in the coefficients. This assumption also implies that  the 
effective gravity is constant throughout the atmosphere, so that the scale height depends only 
on the temperature. (ii) The temperature is sufficiently low that Ho/K<< 1 everywhere in the 
atmosphere. Thus we may neglect the first term in the coefficient of dxldzo. (iii) The equilibrium 
atmosphere is isothermal, with To = Teff. This assumption, together with (i), implies Ho = 
const. Equation (A14) now becomes a simple equation with constant coefficients: 

Upon writing, in the usual way, 
x = const. evzo , 

we find the two roots of equation (A17): 

Our assumption (ii), above, assures that both roots are purely red.  A general solution will then 
be a superposition of terms in exp (v+zo) and exp (v_zo); by applying the additional condition 
that the pulsational energy of the atmosphere must remain finite as z--+ 8 ,  we can eliminate 
the solution exp (v+zo). Since Ho/R<< 1, we have, to first order, 

v - =  ( 4 + 3 u 2 ) / 7 - 3 .  (AZO) 

which follows from equation (9), and setting zo = 1, we finally obtain 

p =  - ( 4 + 3 a 2 ) x .  (A221 

This is the mechanical boundary condition we have used. I t  is essentially the same as that de- 
rived by Unno from a similar but more sophisticated model. It can also be obtained from very 
simple physical considerations, as was done in Paper I. 

c) Discussion + 
Some numerical tests have been carried out to investigate the effect of the choice of boundary 

stead of condition (.49c), all other parameters remaining unchanged. I n  some cases there is a 
slight change in the stability coefficient; qualitatively, however, the results are not changed. 
More significantly, Unno (1964) investigated the effect of using the correct condition (A10) 
instead of our approximate condition (A9c). He  also finds a small change in the stability co- 
efficient; he points out that  i t  is particularly the negative damping in the hydrogen ionization 
zone which is sensitive to the boundary condition. The deeper layers are hardly affected. Since 
we believe the linear approximation to be poorest in the hydrogen zone (cf. 0 VII), any error in 
the effect of this zone due to the use of poor boundary conditions may well be small compared 
with the error due to neglect of the non-linear effects. 

In  all of the tests mentioned above, the mechanical condition (A22) was used. This condition 
assures that no progressive waves are propagated through the atmosphere. Under certain condi- 
tions, however, this assumption might be invalid, with the consequence that  mechanical energy 
could be lost through the photosphere. The simplest example of such a situation would be a hot 

conditions on our stability calculations. We have calculated models using condition (A9b) in- d 
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isothermal atmosphere. If T o  is sufficiently high that HO/R is no longer smalI compared with 
unity, then we must keep both terms in the coefficient of d?/jdzo in equation (A14). I n  this case 
the roots v may be complex, corresponding to running waves. 

I n  the case of the classical Cepheids, the temperature of the photosphere is so low that the 
critical frequency for wave propagation is very high compared with the pulsation frequency. 
However, a similar effect can be produced by a corona of sufficiently high temperature and 
density lying above the atmosphere. It has been noted by various authors (see the discussion in 
Ledoux and Walraven 1958, 0 68) that  such running waves might have an important effect on 
Cepheid pulsations, particularly by increasing the mechanical damping. 

In  some numerical tests we applied a boundary condition based on a simple atmosphere hav- 
ing two isothermal layers, the upper level being hot enough to allow wave propagation. This is 
similar to the model investigated by Schatzman (1956). We found that,  as expected, the progres- 
sive waves could have a strong damping effect due to loss of mechanical work through the photo- 
sphere. On the other hand, the positive and negative damping throughout the rest of the star 
was very little changed. 

The problem has been considerably clarified by the investigations of Unno. His much more 
careful and detailed discussion confirms that progressive waves made possible by a corona can 
strongly damp models like those considered in this paper. He concludes, however, that the 
existence of a sufficiently hot and dense corona in 6 Cephei stars is unlikely. 
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